N-Glycosylation of cholera toxin B subunit in Nicotiana benthamiana: impacts on host stress response, production yield and vaccine potential

نویسندگان

  • Krystal Teasley Hamorsky
  • J. Calvin Kouokam
  • Jessica M. Jurkiewicz
  • Bailey Nelson
  • Lauren J. Moore
  • Adam S. Husk
  • Hiroyuki Kajiura
  • Kazuhito Fujiyama
  • Nobuyuki Matoba
چکیده

Plant-based transient overexpression systems enable rapid and scalable production of subunit vaccines. Previously, we have shown that cholera toxin B subunit (CTB), an oral cholera vaccine antigen, is N-glycosylated upon expression in transgenic Nicotiana benthamiana. Here, we found that overexpression of aglycosylated CTB by agroinfiltration of a tobamoviral vector causes massive tissue necrosis and poor accumulation unless retained in the endoplasmic reticulum (ER). However, the re-introduction of N-glycosylation to its original or an alternative site significantly relieved the necrosis and provided a high CTB yield without ER retention. Quantitative gene expression analysis of PDI, BiP, bZIP60, SKP1, 26Sα proteasome and PR1a, and the detection of ubiquitinated CTB polypeptides revealed that N-glycosylation significantly relieved ER stress and hypersensitive response, and facilitated the folding/assembly of CTB. The glycosylated CTB (gCTB) was characterized for potential vaccine use. Glycan profiling revealed that gCTB contained approximately 38% plant-specific glycans. gCTB retained nanomolar affinity to GM1-ganglioside with only marginal reduction of physicochemical stability and induced an anti-cholera holotoxin antibody response comparable to native CTB in a mouse oral immunization study. These findings demonstrated gCTB's potential as an oral immunogen and point to a potential role of N-glycosylation in increasing recombinant protein yields in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydroponic Treatment of Nicotiana benthamiana with Kifunensine Modifies the N-glycans of Recombinant Glycoprotein Antigens to Predominantly Man9 High-Mannose Type upon Transient Overexpression

Nicotiana benthamiana transient overexpression systems offer unique advantages for rapid and scalable biopharmaceuticals production, including high scalability and eukaryotic post-translational modifications such as N-glycosylation. High-mannose-type glycans (HMGs) of glycoprotein antigens have been implicated in the effectiveness of some subunit vaccines. In particular, Man9GlcNAc2 (Man9) has ...

متن کامل

Production of Functionally Active and Immunogenic Non-Glycosylated Protective Antigen from Bacillus anthracis in Nicotiana benthamiana by Co-Expression with Peptide-N-Glycosidase F (PNGase F) of Flavobacterium meningosepticum

Bacillus anthracis has long been considered a potential biological warfare agent, and therefore, there is a need for a safe, low-cost and highly efficient anthrax vaccine with demonstrated long-term stability for mass vaccination in case of an emergency. Many efforts have been made towards developing an anthrax vaccine based on recombinant protective antigen (rPA) of B. anthracis, a key compone...

متن کامل

Rapid and Scalable Plant-based Production of a Cholera Toxin B Subunit Variant to Aid in Mass Vaccination against Cholera Outbreaks

INTRODUCTION Cholera toxin B subunit (CTB) is a component of an internationally licensed oral cholera vaccine. The protein induces neutralizing antibodies against the holotoxin, the virulence factor responsible for severe diarrhea. A field clinical trial has suggested that the addition of CTB to killed whole-cell bacteria provides superior short-term protection to whole-cell-only vaccines; howe...

متن کامل

Production of Chicken Egg Yolk Antibody (IgY) Against Recombinant Cholera Toxin B Subunit and Evaluation of Its Prophylaxis Potency in Mice

Background: Cholera toxin (CT), responsible for the harmful effects of cholera infection, is made up of one A subunit (enzymatic), and five B subunits (cell binding). The release of cholera toxin is the main reason for the debilitating loss of intestinal fluid. Inhibition of the B subunit (CTB) may block CT activity. Objective: To determine the effect of anti CTB-IgY against oral challenge with...

متن کامل

Fusion of Cholera toxin B subunit (ctxB) with Shigella dysenteriae type I toxin B subunit (stxB), Cloning and Expression that in E. coli

Background and Objective: Shiga toxin (STx) is the main virulence factor in Shigella Dysenteriae type I and is composed of an enzymatic subunit STxA monomer and a receptor-binding STxB homopentamer. Shigella toxin B subunit (STxB) is a non-toxic homopentameric protein responsible for toxin binding and internalization into target cells by interacting with glycolipid (Gb3). Cholera toxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015